A chromosome-level genome assembly for the astaxanthin-producing microalga Haematococcus pluvialis
A chromosome-level genome assembly for the astaxanthin-producing microalga Haematococcus pluvialis
Blog Article
Abstract The green microalga Haematococcus pluvialis can synthesize high amounts of astaxanthin, which is a valuable antioxidant that has been utilized in human health, cosmetics, and aquaculture.To illustrate detailed molecular clues to astaxanthin yield, we performed PacBio HIFI along with Hi-C sequencing to construct feline 1-hcpch vaccine an improved chromosome-level haplotypic genome assembly with 32 chromosomes and a genome size of 316.0 Mb.
Its scaffold N50 (942.6 kb) and contig N50 (304.8 kb) have been upgraded remarkably from our previous genome draft, and a total of 32,416 protein-coding genes were predicted.
We also established a high-evidence phylogenetic tree from seven representative algae species, here with the main aim to calculate their divergence times and identify expanded/contracted gene families.We also characterized genome-wide localizations on chromosomes of some important genes such as five BKTs (encoding beta-carotene ketolases) that are putatively involved in astaxanthin production.In summary, we reported the first chromosome-scale map of H.
pluvialis, which provides a valuable genetic resource for in-depth biomedical investigations on this momentous green alga and commercial astaxanthin bioproduction.